After setting foot on the Moon, the next destination for humankind is Mars, which presents a whole new set of challenges in speedy, long-distance space travel.

  • anonionfinelyminced@kbin.social
    link
    fedilink
    arrow-up
    147
    ·
    1 year ago

    It’s a Rotating Detonation Rocket Engine"

    What makes the RDRE so revolutionary is that it makes use of a sustained detonation circling around a ring-shaped channel, fed by a mix of fuel and oxygen which is ignited by each passing explosion.
    Crucially, the RDRE uses less propellant fuel than conventional rocket engines, and is simpler in terms of its machinery and mechanisms. That means going into space becomes cheaper, and traveling further distances becomes possible.

    Saved you a click.

  • Nighed@sffa.community
    link
    fedilink
    English
    arrow-up
    14
    ·
    edit-2
    1 year ago

    This is a fancy aerospike engine right? The rotating detinations gives it higher chamber pressure and therefore better ISP or something?

    I will look for the Scott Manley video on this later (I think it was him?) Edit: also a Real Engineering one that explains the aero-spike nozzle

    Anyone have the ISP of this experiment to compare to other engines?

  • Ejh3k@lemmy.world
    link
    fedilink
    English
    arrow-up
    4
    ·
    1 year ago

    I remember first hearing about the development of this back in the early 90s on Beyond 2000.

  • Desistance@lemmy.world
    link
    fedilink
    English
    arrow-up
    3
    arrow-down
    1
    ·
    1 year ago

    I heard that the destination is actually Venus because it’s closer and has oxygen in the upper atmosphere.

    • SCB@lemmy.world
      link
      fedilink
      English
      arrow-up
      6
      arrow-down
      1
      ·
      edit-2
      1 year ago

      Venus is significantly more hostile than Mars, so while we definitely want to do more with Venus, Luna and Mars are clear next-ups for manned landings.

      While all of Mars is hostile to human life, Venus is also incredibly hostile to equipment, and thus requires a different approach to even unmanned launches.

      Current maximum lifetime for any unmanned craft in the Venusian atmosphere (to say nothing of the ground) is only about 2 hours.

        • SCB@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          arrow-down
          1
          ·
          1 year ago

          That’s true about their upper atmosphere, but we’re nowhere close to being able to capitalize on it (as in, no missions even planned). Closest we’ve got on paper is an orbiter by the early 30s.

          Hopefully in my lifetime we see an upper atmosphere balloon or something. That alone would be unbelievably cool.

            • SCB@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              edit-2
              1 year ago

              Dude what’s neat about this is Oxygen on Venus is like Helium on Earth (less dense than most of the atmosphere, so rises naturally) so your balloon doesn’t even need to be hot, just really sturdy.